注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)教育/教材/教輔教材研究生/本科/??平滩?/a>基礎(chǔ)代數(shù)幾何(第2卷)

基礎(chǔ)代數(shù)幾何(第2卷)

基礎(chǔ)代數(shù)幾何(第2卷)

定 價(jià):¥43.00

作 者: (俄)Igor R.Shafarevich著
出版社: 世界圖書(shū)出版公司北京公司
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書(shū)可以去


ISBN: 9787506236201 出版時(shí)間: 1998-01-01 包裝: 出版日期:1998-3-1 版次:1
開(kāi)本: 20cm 頁(yè)數(shù): 269頁(yè) 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  Books 2 and 3 correspond to Chap. V-IX of the first edition. They study schemes and complex manifolds, two notions that generalise in different directions the varieties in projective space studied in Book 1. Introducing them leads also to new results in the theory of projective varieties. For example, it is within the framework of the theory of schemes and abstract varieties that we find the natural proof of the adjunction formula for the genus of a curve, which we have already stated and applied in Chap. IV, 2.3. The theory of complex analytic manifolds leads to the study of the topology of projective varieties over the field of complex numbers. For some questions it is only here that the natural and historical logic of the subject can be reasserted; for example, differential forms were constructed in order to be integrated, a process which only makes sense for varieties over the (mai or) complex fields. Changes from the First Edition.此書(shū)為英文版。

作者簡(jiǎn)介

暫缺《基礎(chǔ)代數(shù)幾何(第2卷)》作者簡(jiǎn)介

圖書(shū)目錄

BOOK2.SchemesandVarieties
ChapterV.Schemes
1.TheSpecofaRing
1.1.DefinitionofSpecA
1.2.PropertiesofPointsofSpecA
1.3.TheZariskiTopologyofSpecA
1.4.Irreducibility,Dimension
Exercisesto~1
2.Sheaves
2.1.Presheaves
2.2.TheStructurePresheaf
2.3.Sheaves
2.4.StalksofaSheaf
Exercisesto~2
3.Schemes
3.1.DefinitionofaScheme
3.2.GlueingSchemes
3.3.ClosedSubschemes
3.4.ReducedSchemesandNilpotents
3.5.FinitenessConditions
Exercisesto~3
4.ProductsofSchemes
4.1.DefinitionofProduct
4.2.GroupSchemes
4.3.Separatedness
Exercisesto~4
ChapterVI.Varieties
1.DefinitionsandExamples
1.1.Definitions
1.2.VectorBundles
1.3.VectorBundlesandSheaves
1.4.DivisorsandLineBundles
Exercisesto~1
2.AbstractandQuasiprojectiveVarieties
2.1.Chow'sLemma
2.2.BlowupAlongaSubvariety
2.3.ExampleofNon-QuasiprojectiveVariety
2.4.CriterionsforProjectivity
Exercisesto~2
3.CoherentSheaves
3.1.SheavesofOx-modules
3.2.CoherentSheaves
3.3.DevissageofCoherentSheaves
3.4.TheFinitenessTheorem
Exercisesto~3
4.ClassificationofGeometricObjectsandUniversalSchemes
4.1.SchemesandFunctors
4.2.TheHilbertPolynomial
4.3.FlatFamilies
4.4.TheHilbertScheme
Exercisesto~4
BOOK3.ComplexAlgebraicVarietiesandComplexManifolds
ChapterVII.TheTopologyofAlgebraicVarieties
1.TheComplexTopology
1.1.Definitions
1.2.AlgebraicVarietiesasDifferentiableManifolds;
Orientation
1.3.HomologyofNonsingularProjectiveVarieties
Exercisesto~1
2.Connectedness
2.1.PreliminaryLemmas
2.2.TheFirstProofoftheMainTheorem
2.3.TheSecondProof
2.4.AnalyticLemmas
2.5.Connectednes8ofFibres
Exercisesto~2
3.TheTopologyofAlgebraicCurves
3.1.LocalStructureofMorphisms
3.2;TriangulationofCurves
3.3.TopologicalClassificationofCurves
3.4.CombinatorialClassificationofSurfaces
3.5.TheTopologyofSingularitiesofPlaneCurves
Exercisesto~3
4.RealAlgebraicCurves
4.1.ComplexConjugation
4.2.ProofofHarnack'sTheorem
4.3.OvalsofRealCurves
Exercisesto~4
ChapterVIII.ComplexManifolds
1.DefinitionsandExamples
1.1.Definition
1.2.QuotientSpaces
1.3.CommutativeAlgebraicGroupsasQuotientSpaces
1.4.ExamplesofCompactComplexManifoldsnot
IsomorphictoAlgebraicVarieties
1.5.ComplexSpaces
Exercisesto~1
2.DivisorsandMeromorphicFunctions
2.1.Divisors
2.2.MeromorphicFunctions
2.3.TheStructureoftheFieldM(X)
Exercisesto~2
3.AlgebraicVarietiesandComplexManifolds
3.1.ComparisonTheorems
3.2.ExampleofNonisomorphicAlgebraicVarietiesthat
AreIsomorphicasComplexManifolds
3.3.ExampleofaNonalgebraicCompactComplex
ManifoldwithMaximalNumberofIndependent
MetamorphicFunctions
3.4.TheClassificationofCompactComplexSurfaces
Exercisesto~3
4.KahlerManifolds
4.1.KaihlerMetric
4.2.Examples
4.3.OtherCharacterisationsofKahlerMetrics
4.4.ApplicationsofKahlerMetrics
4.5.HodgeTheory
Exercisesto~4
ChapterIX.Uniformisation
1.TheUniversalCover
1.1.TheUniversalCoverofaComplexManifold
1.2.UniversalCoversofAlgebraicCurves
1.3.ProjectiveEmbeddingofQuotientSpaces
Exercisesto~1
2.CurvesofParabolicType
2.1.Thetafunctions
2.2.ProjectiveEmbedding
2.3.EllipticFunctions,EllipticCurvesandElliptic
Integrals
Exercisesto~2
3.CurvesofHyperbolicType
3.1.PoincareSeries
3.2.ProjectiveEmbedding
3.3.AlgebraicCurvesandAutomorphicFunctions
Exercisesto~3
4.UniformisingHigherDimensionalVarieties
4.1.CompleteIntersectionsareSimplyConnected
4.2.ExampleofManifoldwithaGivenFiniteGroup
4.3.Remarks
Exercisesto~4
HistoricalSketch
1.EllipticIntegrals
2.EllipticFunctions
3.AbelianIntegrals
4.RiemannSurfaces
5.TheInversionofAbelianIntegrals
6.TheGeometryofAlgebraicCurves
7.HigherDimensionalGeometry
8.TheAnalyticTheoryofComplexManifolds
9.AlgebraicVarietiesoverArbitraryFieldsandSchemes
References
ReferencesfortheHistoricalSketch
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)