本書是為“數(shù)值分析”后續(xù)課編寫的教材,要求的預備知識包括微積分、線性代數(shù)和大學本科數(shù)值分析,內容上與本科階段的數(shù)值分析前后銜接并盡可能減少重復。全書共9章,分成四個部分,另有一個附錄。第1、4兩章分別介紹矩陣論和近代分析的基本理論,作為大學數(shù)學基礎知識的補充、延伸和深化。第2、3兩章是數(shù)值線性代數(shù)部分。在里茨原理和伽遼金原理的理論格局下介紹了近代流行的實用算法。第5、6、7章集中討論非線性問題的理論和數(shù)值算法。主要介紹了非線性方程組的牛頓法及其變形、非線性特征值問題、分岔問題以及離散動力系統(tǒng)的有關課題。第8、9兩章介紹有關常微分方程的初值及邊值問題的算法。每章后面都附有習題。本書體系、內容新穎,收入了計算數(shù)學傳統(tǒng)領域中許多新算法,也涉及到計算數(shù)學的很多新興領域。各部分內容有相對的獨立性。本書可以作為理工科研究生學位課程“高等數(shù)值分析”的教材,也可以供有同樣基礎的科技人員參考。