注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)自然科學(xué)總論實(shí)分析

實(shí)分析

實(shí)分析

定 價(jià):¥39.00

作 者: Elias M.Stein,Rami Shakarchi 著
出版社: 世界圖書出版社
叢編項(xiàng):
標(biāo) 簽: 科學(xué)與自然

ISBN: 9787506282383 出版時(shí)間: 2007-01-01 包裝: 平裝
開本: 32開 頁數(shù): 402 字?jǐn)?shù):  

內(nèi)容簡介

  本書由在國際上享有盛譽(yù)普林斯大林頓大學(xué)教授Stein等撰寫而成,是一部為數(shù)學(xué)及相關(guān)專業(yè)大學(xué)二年級和三年級學(xué)生編寫的教材,理論與實(shí)踐并重。為了便于非數(shù)學(xué)專業(yè)的學(xué)生學(xué)習(xí),全書內(nèi)容簡明、易懂,讀者只需掌握微積分和線性代數(shù)知識(shí)。關(guān)于本書的詳細(xì)介紹,請見“影印版前言”。本書已被哈佛大學(xué)和加利福尼亞理工學(xué)院選為教材。與本書相配套的教材《傅立葉分析導(dǎo)論》和《復(fù)分析》也已影印出版。

作者簡介

  Stein,在國際上享有盛譽(yù),現(xiàn)任美國普林斯頓大學(xué)數(shù)學(xué)系教授。他是當(dāng)代分析,特別是調(diào)和分析和分析領(lǐng)域領(lǐng)袖人物之一。古典調(diào)和分析最困難問題之一是推廣到多維。他是多維歐氏調(diào)和分析的創(chuàng)造者之一,為此他發(fā)展了許多先進(jìn)工具如奇異積分、Radon變換、極大函數(shù)等。他還發(fā)展了多個(gè)實(shí)變元的Hardy空間理論,推廣了1971年F. John和L. Nirenberg的重要發(fā)現(xiàn):即Hardy空間與BMO空間的對偶。在群上的調(diào)和分析方面也有貢獻(xiàn),例如同R.Kunze一起發(fā)現(xiàn)所謂Kunze-Stein現(xiàn)象。除此之外,他對多復(fù)變問題也做出了突出成績?!〕搜芯抗ぷ髦?,他的許多著作成為影響學(xué)科發(fā)展的重要參考文獻(xiàn)。為此,他榮獲1984年美國數(shù)學(xué)會(huì)在論述方面的Steele獎(jiǎng)?!∮捎谒某删停?974年被選為美國國家科學(xué)院院士,1982年被選為美國文理學(xué)院院士,1993年獲得瑞士科學(xué)院頒發(fā)的Schock獎(jiǎng)。1999年獲得世界性Wolf數(shù)學(xué)獎(jiǎng)。

圖書目錄

Foreword
Introduction
1 Fourier series: completion
2 Limits of continuous functions
3 Length of curves
4 Differentiation and integration
5 The problem of measure
Chapter 1. Measure Theory
1 Preliminaries
2 The exterior measure
3 Measurable sets and the Lebesgue measure
4 Measurable functions
4.1 Definition and basic properties
4.2 Approximation by simple functions or step functions
4.3 Littlewood's three principles
5* The Brunn-Minkowski inequality
6 Exercises
7 Problems
Chapter 2. Integration Theory
1 The Lebesgue integral: basic properties and convergence theorems
2 The space L1 of integrable functions
3 Fubini's theorem
3.1 Statement and proof of the theorem
3.2 Applications of Fubini's theorem
4* A Fourier inversion formula
5 Exercises
6 Problems
Chapter 3. Differentiation and Integration
1 Differentiation of the integral
1.1 The Hardy-Littlewood maximal function
1.2 The Lebesgue differentiation theorem
2 Good kernels and approximations to the identity
3 Differentiability of functions
3.1 Functions of bounded variation
3.2 Absolutely continuous functions
3.3 Differentiability of jump functions
4 Rectifiable curves and the isoperimetric inequality
4.1 Minkowski content of a curve
4.2* Isoperimetrie inequality
5 Exercises
6 Problems
Chapter 4. Hilbert Spaces: An Introduction
1 The Hilbert space L2
2 Hilbert spaces
2.1 Orthogonality
2.2 Unitary mappings
2.3 Pre-Hilbert spaces
3 Fourier series and Fatou's theorem
3.1 Fatou's theorem
4 Closed subspaees and orthogonal projections
5 Linear transformations
5.1 Linear flmetionals and the Riesz representation the-orem
5.2 Adjoints
5.3 Examples
6 Compact operators
7 Exercises
8 Problems
Chapter 5. Hilbert Spaces: Several Examples
1 The Fourier transform on L2
2 The Hardy space of the upper half-plane
3 Constant coefficient partial differential equations
3.1 Weak solutions
3.2 The main theorem and key estimate
4* The Dirichlet principle
4.1 Harmonic functions
4.2 The boundary value problem and Diriehlet's principle
5 Exercises
6 Problems
Chapter 6.Abstract Measure and Integration Theory
Chapter 7.Hausdorff Measure and Fractals
Notes and References
Bibliography
Symbol Glossary
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)