普渡大學(xué)的Nicholas J. Giordano 和Hisao Nakanishi具有多年的科研和教育經(jīng)驗(yàn),所著的本書是計(jì)算物理領(lǐng)域的一本優(yōu)秀教材。它緊扣一些非?;镜y以解析求解的物理問題逐步展開,圍繞各個物理學(xué)專題介紹了物理學(xué)研究中各種基本的計(jì)算機(jī)數(shù)值模擬方法,深入淺出地討論其理論基礎(chǔ)和實(shí)際應(yīng)用,著重于解決實(shí)際物理問題的基本數(shù)值方法。這樣可以使讀者通過學(xué)習(xí),對物理學(xué)中應(yīng)用的主要計(jì)算技術(shù)有一個全面的了解,從而具有利用計(jì)算機(jī)進(jìn)行數(shù)值計(jì)算解決復(fù)雜體系物理問題的能力。本書包含了很多物理學(xué)專題,方便教師在教學(xué)內(nèi)容及其深度的選擇方面有較大的靈活性。
作者簡介
暫缺《計(jì)算物理(第2版)》作者簡介
圖書目錄
Preface About the Authors 1 A First Numerical Problem 1.1 Radioactive Decay 1.2 A Numerical Approach 1.3 Design and Construction of a Working Program:Codes and Pse docodes 1.4 Testing Your Program 1.5 Numerical Considerations 1.6 Programming Guidelines and Philosophy 2 Realistic Projectile Motion 2.1 Bicycle Racing:The Effect of Air Resistance 2.2 Projectile Motion:The Trajectory of a Cannon Shell 2.3 Baseball:Motion of a Batted Ball 2.4 Throwing a Baseball:The Effects of Spin 2.5 Golf 3 Oscillatory Motion and Chaos 3.1 Simple Harmonic Motion 3.2 Making the Pendulum More Interesting:Adding Dissipation, Nonlinearity, and a Driving Force 3.3 Chaos in the Driven Nonlinear Pendulum 3.4 Routes to Chaos:Period Doubling 3.5 The Logistic Map:Why the Period Doubles 3.6 The Lorenz Model 3.7 The Billiard Problem 3.8 Behavior in the Frequency Domain:Chaos and Noise 4 The Solar System 4.1 Kepler's Laws 4.2 The Inverse-Square Law and the Stability of Planetary Orbits 4.3 Precession of the Perihelion of Mercury 4.4 The Three-Body Problem and the Effect of Jupiter on Earth 4.5 Resonances in the Solar System:Kirkwood Gaps and Planetary Rings 4.6 Chaotic Tumbling of Hyperion 5 Potentials and Fields 5.1 Electric Potentials and Fields:Laplace's Equation 5.2 Potentials and Fields Near Electric Charges 5.3 Magnetic Field Produced by a Current 5.4 Magnetic Field of a Solenoid:Inside and Out 6 Waves 6.1 Waves:The Ideal Case 6.2 Frequency Spectrum of Waves on a String 6.3 Motion of a(Somewhat)Realistic String 6.4 Waves on a String(Again):Spectral Methods 7 Random Systems 7.1 Why Perform Simulations of Random Processes? 7.2 Random Walks 7.3 Self-Avoiding Walks 7.4 Random Walks and Diffusion 7.5 Diffusion, Entropy, and the Arrow of Time 7.6 Cluster Growth Models 7.7 Fractal Dimensionalities of Curves 7.8 Percolation 7.9 Diffusion on Fractals 8 Statistical Mechanics, Phase Transitions, and the Ising Model 8.1 The Ising Model and Statistical Mechanics 8.2 Mean Field Theory 8.3 The Monte Carlo Method 8.4 The Ising Model and Second-Order Phase Transitions 8.5 First-Order Phase Transitions 8.6 Scaling 9 Molecular Dynamics 9.1 Introduction to the Method:Properties of a Dilute Gas 9.2 The Melting Transition 9.3 Equipartition and the Fermi-Pasta-Ulam Problem 10 Quantum Mechanics 10.1 Time-Independent SchrSdinger Equation:Some Preliminaries 10.2 One Dimension:Shooting and Matching Methods 10.3 A Matrix Approach 10.4 A Variational Approach 10.5 Time-Dependent Schr6dinger Equation:Direct Solutions 10.6 Time-Dependent Schr6dinger Equation in Two Dimensions 10.7 Spectral Methods 11 Vibrations,Waves,and the Physics of Musical Instruments 12 Interdisciplinary Topics APPENDICES A Ordinary Differential Equations with Initial Values B Root Finding and Optimization C The Fourier Transform D Fitting Data to a Function E Numerical Integration F Generation of Random Numbers G Statistical Tests of Hypotheses H Solving Linear Systems Index