注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學物理學統(tǒng)計力學(第二版)

統(tǒng)計力學(第二版)

統(tǒng)計力學(第二版)

定 價:¥96.00

作 者: (德國)(Schwabl.F)施瓦布 編
出版社: 科學出版社
叢編項: 國外物理名著系列
標 簽: 理論力學(一般力學)

ISBN: 9787030209412 出版時間: 2008-02-01 包裝: 平裝
開本: 32 頁數(shù): 577 pages 字數(shù):  

內(nèi)容簡介

  本書是經(jīng)典的《統(tǒng)計力學》的修訂版,包括平衡和非平衡統(tǒng)計物理的基本理論。除了在微正則密度矩陣單一假設(shè)下的平衡統(tǒng)計和熱力學的演繹推理外,本書還重點論述了非平衡統(tǒng)計中的一些重要的原理。書中的計算都提供了詳細的推導過程,每章后面附有習題,可以幫助學生鞏固他們對教材的理解。除基礎(chǔ)知識外,本書還論述了本領(lǐng)域的普適性及其應(yīng)用的多樣性,還包括一些新的領(lǐng)域,如重正化群,逾滲,運動的隨機方程及其在臨界動力學中的應(yīng)用,動理學理論等,同時還討論了不可逆論的基本原理。本書適用于掌握基本的量子力學知識的讀者,可供物理學和相關(guān)理工科專業(yè)的高年級學生閱讀參考。

作者簡介

暫缺《統(tǒng)計力學(第二版)》作者簡介

圖書目錄

1.Basic Principles
 1.1 Introduction
 1.2 A Brief Excursion into Probability Theory
  1.2.1 Probability Density and Characteristic.Functions
  1.2.2 The Central Limit Theorem.
 1.3 Ensembles in Classical Statistics.
  1.3.1 Phase Space and Distribution Functions
  1.3.2 The Liouville Equation
 1.4 Quantum Statistics
  1.4.1 The Density Matrix for Pure and Mixed Ensembles
  1.4.2 The Von Neumann Equation.
 *1.5 Additional Remarks
  *1.5.1 The Binomial and the Poisson Distributions
  *1.5.2 Mixed Ensembles and the Density Matrix of Subsystems
 Problems
2.Equilibrium Ensembles
 2.1 Introductory Remarks
 2.2 Microcanonical Ensembles
  2.2.1 Microcanonical Distribution Functions and Density Matrices
  2.2.2 The Classical Ideal Gas
  *2.2.3 Quantum.mechanical Harmonic Oscillators and Spin Systems
 2.3 Entropy
  2.3.1 General Definition
  2.3.2 An Extremal Property of the Entropy
  2.3.3 Entropy ofthe Microcanonical Ensemble
 2.4 Temperature and Pressure
  2.4.1 Systems in Contact:the Energy Distribution Function Definition of the Temperature
  2.4.2 0n the Widths of the Distribution Functions of Macroscopic Quantities
  2.4.3 External Parameters:Pressure
 2.5 Properties of Some Non-interacting Systems
  2.5.1 The Ideal Gas
  *2.5.2 Non-interacting Quantum Mechanical Harmonic Oscillators and Spins
 2.6 The Canonical Ensemble
  2.6.1 The Density Matrix
  2.6.2 Examples:the Maxwell Distribution and the Barometric Pressure Formula
  2.6.3 The Entropy of the Canonical Ensemble and Its Extremal Values
  2.6.4 The Virial Theorem and the Equipartition Theorem
  2.6.5 Thermodynamic Quantities in the Canonical Ensemble
  2.6.6 Additional Properties of the Entropy
 2.7 The Grand Canonical Ensemble
  2.7.1 Systems with Particle Exchange
  2.7.2 The Grand Canonical Density Matrix
  2.7.3 Thermodynamic Quantities
  2.7.4 The Grand Partition Function for the Classical Ideal Gas
  *2.7.5 The Grand Canonical Density Matrix in Second Quantization
 Problems
3.Thermodynamics
 3.1 Potentials and LaWS of Equilibrium Thermodynamics
  3.1.1 Definitions
  3.1.2 The Legendre Transformation
  3.1.3 The Gibbs-Duhem Relation in Homogeneous Systems
 3.2 Derivatives of Thermodynamic Quantities
  3.2.1 Definitions
  3.2.2 Integrability and the Maxwell Relations
  3.2.3 Jacobians
  3.2.4 Examples
 3.3 Fluctuations and Thermodynamic Inequalities.
  3.3.1 Fluctuations
  3.3.2 Inequalities
 3.4 Absolute Temperature and Empirical Temperatures
 3.5  Thermodynamic Processes
  3.5.1 Thermodynamic Concepts
  3.5.2 The Irreversible Expansion of a Gas the Gay-Lussac Experiment
  3.5.3 The Statistical Foundation of Irreversibility
  3.5.4 Reversible Processes
  3.5.5 The Adiabatic Equation
 ……
3.Thermodynamics
4.Ideal Quantum Gases
5.Real Gases,Liquids,and Solutions
6.Magnetism
7.Phase Transitions,Renormalization Group Theroy,and Percolation
8.Brownian Motion,Equations of Motion and the Fokker-Planck Equations
9.The Boltzmann Equation
10.Irreversibilty and the Approach to Equilibrium
Appendix
Subject Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號