There are two aspects of cosmology today that make it more alluring than ever. First, there is an enormous amount of data. To give just one example of how rapidly our knowledge of the structure of the universe is advancing, consider galaxy surveys which map the sky. In 1985, the state-of-the-art survey was the one carried out by the Center for Astrophysics; it consisted of the positions of 1100 galaxies. Today, the Sloan Digital Sky Survey and the Two Degree Field between them have recorded the 3D positions of half a million galaxies.
作者簡介
Scott Dodelson:美國費米國家實驗室理論天體物理研究組負責人和芝加哥大學天文和天體物理學系教授。在哥倫比亞大學獲博士學位。進入費米國家實驗室和芝加哥大學前在哈佛大學做研究員。在宇宙論方面發(fā)表了七十多篇論文,其中大部分是關(guān)于宇宙的微波背景和大尺度結(jié)構(gòu)。目次:標準模型及其它;平坦擴張的宇宙;遠離平衡態(tài);波爾茲曼方程;愛因斯坦方程;初始條件;多樣性;各項異性;多樣性的探測;弱透鏡化和偏振;分析;附錄A:部分習題解答;附錄B:常數(shù);附錄C:特殊函數(shù);附錄D:符號;參考文獻;索引。讀者對象:理論物理、天文物理和宇宙學等專業(yè)的高年級本科生、研究生和相關(guān)專業(yè)的科研人員。
圖書目錄
1 The Standard Model and Beyond 1.1 The Expanding Universe 1.2 The Hubble Diagram 1.3 Big Bang Nucleosynthesis 1.4 The Cosmic Microwave Background 1.5 Beyond the Standard Model 1.6 Summary Exercises 2 The Smooth, Expanding Universe 2.1 General Relativity 2.1.1 The Metric 2.1.2 The Geodesic Equation 2.1.3 Einstein Equations 2.2 Distances 2.3 Evolution of Energy 2.4 Cosmic Inventory 2.4.1 Photons 2.4.2 Baryons 2.4.3 Matter 2.4.4 Neutrinos 2.4.5 Dark Energy 2.4.6 Epoch of Matter-Radiation Equality 2.5 Summary Exercises 3 Beyond Equilibrium 3.1 Boltzmann Equation for Annihilation 3.2 Big Bang Nucleosynthesis 3.2.1 Neutron Abundance 3.2.2 Light Element Abundances 3.3 Recombination 3.4 Dark Matter 3.5 Summary Exercises 4 The Boltzmann Equations 4.1 The Boltzmann Equation for the Harmonic Oscillator 4.2 The Collisionless Boltzmann Equation for Photons 4.2.1 Zero-Order Equation 4.2.2 First-Order Equation 4.3 Collision Terms: Compton Scattering 4.4 The Boltzmann EqUation for Photons 4.5 The Boltzmann Equation for Cold Dark Matter 4.6 The Boltzmann Equation for Baryons 4.7 Summary Exercises 5 Einstein Equations 5.1 The Perturbed Ricci Tensor and Scalar 5.1.1 Christoffel Symbols 5.1.2 Ricci Tensor 5.2 Two Components of the Einstein Equations 5.3 Tensor Perturbations 5.3.1 Christoffel Symbols for Tensor Perturbations 5.3.2 Ricci Tensor for Tensor Perturbations 5.3.3 Einstein Equations for Tensor Perturbations 5.4 The Decomposition Theorem 5.5 From Gauge to Gauge 5.6 Summary Exercises 6 Initial Conditions 6.1 The Einstein-Boltzmann Equations at Early Times 6.2 The Horizon 6.3 Inflation 6.3.1 A Solution to the Horizon Problem 6.3.2 Negative Pressure 6.3.3 Implementation with a Scalar Field 6.4 Gravity Wave Production 6.4.1 Quantizing the Harmonic Oscillator 6.4.2 Tensor Perturbations 6.5 Scalar Perturbations 6.5.1 Scalar Field Perturbations around a Smooth Background 6.5.2 Super-Horizon Perturbations 6.5.3 Spatially Flat Slicing 6.6 Summary and Spectral Indices Exercises 7 Inhomogeneities 7.1 Prelude 7.1.1 Three Stages of Evolution 7.1.2 Method 7.2 Large Scales 7.2.1 Super-horizon Solution 7.2.2 Through Horizon Crossing 7.3 Small Scales 7.3.1 Horizon Crossing 7.3.2 Sub-horizon Evolution 7.4 Numerical Results and Fits 7.5 Growth Function 7.6 Beyond Cold Dark Matter 7.6.1 Baryons 7.6.2 Massive Neutrinos 7.6.3 Dark Energy Exercises 8 Anisotropies 8.1 Overview 8.2 Large-Scale Anisotropies 8.3 Acoustic Oscillations 8.3.1 Tightly Coupled Limit of the Boltzmann Equations 8.3.2 Tightly Coupled Solutions 8.4 Diffusion Damping 8.5 Inhomogeneities to Anisotropies 8.5.1 Free Streaming 8.5.2 The Cl's 8.6 The Anisotropy Spectrum Today 8.6.1 Sachs-Wolfe Effect 8.6.2 Small Scales 8.7 Cosmological Parameters 8.7.1 Curvature 8.7.2 Degenerate Parameters 8.7.3 Distinct Imprints Exercises 9 Probes of Inhomogeneities 9.1 Angular Correlations 9.2 Peculiar Velocities 9.3 Direct Measurements of Peculiar Velocities 9.4 Redshift Space Distortions 9.5 Galaxy Clusters Exercises 10 Weak Lensing and Polarization 10.1 Gravitational Distortion of Images 10.2 GeodesiCs and Shear 10.3 Ellipticity as an Estimator of Shear 10.4 Weak Lensing Power Spectrum 10.5 Polarization: The Quadrupole and the Q/U DecompositioI 10.6 Polarization from a Single Plane Wave 10.7 Boltzmann Solution 10.8 Polarization Power Spectra 10.9 Detecting Gravity Waves Exercises 11 Analysis 11.1 The Likelihood Function 11.1.1 Simple Example 11.1.2 CMB Likelihood 11.1.3 Galaxy Surveys 11.2 Signal Covariance Matrix 11.2.1 CMB Window Functions 11.2.2 Examples of CMB Window Functions 11.2.3 Window Functions for Galaxy Surveys 11.2.4 Summary 11.3 Estimating the Likelihood Function 11.3.1 Karhunen-Loeve Techniques 11.3.2 Optimal Quadratic Estimator 11.4 The Fisher Matrix: Limits and Applications 11.4.1 CMB 11.4.2 Galaxy Surveys 11.4.3 Forecasting 11.5 Mapmaking and Inversion 11.6 Systematics 11.6.1 Foregrounds 11.6.2 Mode Subtraction Exercises A Solutions to Selected Problems B Numbers B.1 Physical Constants B.2 Cosmological Constants C Special Functions C.1 Legendre Polynomials C.2 Spherical Harmonics C.3 Spherical Bessel Functions C.4 Fourier Transforms C.5 Miscellaneous D Symbols Bibliography Index