注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)多體物理學(xué)基礎(chǔ):原理和方法(英文版)

多體物理學(xué)基礎(chǔ):原理和方法(英文版)

多體物理學(xué)基礎(chǔ):原理和方法(英文版)

定 價(jià):¥95.00

作 者: Wolfgang,Nolting 著
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787510098857 出版時(shí)間: 2015-07-01 包裝: 平裝
開(kāi)本: 24開(kāi) 頁(yè)數(shù): 602 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《多體物理學(xué)基礎(chǔ):原理和方法(英文版)》利用現(xiàn)代研究方法研究多粒子體系物理體系,并且通過(guò)大量合適的練習(xí)演示了它們的應(yīng)用,幫助讀者加深對(duì)多粒子體系主要內(nèi)容的理解。全書共分6章,內(nèi)容包括:二次量子化;多體模型體系;格林函數(shù);相互作用粒子體系;微擾理論;有限溫度微擾理論;習(xí)題解等。

作者簡(jiǎn)介

  Wolfgang Nolting(W.諾爾廷,德國(guó))是國(guó)際知名學(xué)者,在物理學(xué)界享有盛譽(yù)。本書凝聚了作者多年科研和教學(xué)成果,適用于科研工作者、高校教師和研究生。

圖書目錄

1 Second Quantisation
1.1 Identical Particles
1.2 The Continuous Fock Representation
1.3 The Discrete Fock Representation
1.4 Exercises
1.5 Self-Examination Questions
2 Many-Body Model Systems
2.1 Crystal Electrons
2.1.1 Non-interacting Bloch Electrons
2.1.2 The Jellium Model
2.1.3 The Hubbard Model
2.1.4 Exercises
2.2 Lattice Vibrations
2.2.1 The Harmonic Approximation
2.2.2 The Phonon Gas
2.2.3 Exercises
2.3 The Electron-Phonon Interaction
2.3.1 The Hamiltonian
2.3.2 The Effective Electron-Electron Interaction
2.3.3 Exercises
2.4 Spin Waves
2.4.1 Classification of Magnetic Solids
2.4.2 Model Concepts
2.4.3 Magnons
2.4.4 The Spin-Wave Approximation
2.4.5 Exercises
2.5 Self-Examination Questions
3 Green's Funetions
3.1 Preliminary Considerations
3.1.1 Representations
3.1.2 Linear-Response Theory
3.1.3 The Magnetic Susceptibility
3.1.4 The Electrical Conductivity
3.1.5 The Dielectric Function
3.1.6 Spectroscopies, Spectral Density
3.1.7 Exercises
3.2 Double-Time Green's Functions
3.2.1 Equations of Motion
3.2.2 Spectral Representations
3.2.3 The Spectral Theorem
3.2.4 Exact Expressions
3.2.5 The Kramers-Kronig Relations
3.2.6 Exercises
3.3 First Applications
3.3.1 Non-Interacting Bloch Electrons
3.3.2 Free Spin Waves
3.3.3 The Two-Spin Problem
3.3.4 Exercises
3.4 The Quasi-Particle Concept
3.4.1 One-Electron Green's Functions
3.4.2 The Electronic Self-Energy
3.4.3 Quasi-Particles
3.4.4 Quasi-Particle Density of States
3.4.5 Internal Energy
3.4.6 Exercises
3.5 Self-Examination Questions
4 Systems of Interacting Particles
4.1 Electrons in Solids
4.1.1 The Limiting Case of an Infinitely Narrow Band
4.1.2 The Hartree-Fock Approximation
4.1.3 Electronic Correlations
4.1.4 The Interpolation Method
4.1.5 The Method of Moments
4.1.6 The Exactly Half-filled Band
4.1.7 Exercises
4.2 Collective Electronic Excitations
4.2.1 Charge Screening (Thomas-Fermi Approximation)
4.2.2 Charge Density Waves, Plasmons
4.2.3 Spin Density Waves, Magnons
4.2.4 Exercises
4.3 Elementary Excitations in Disordered Alloys
4.3.1 Formulation of the Problem
4.3.2 The Effective-Medium Method
4.3.3 The Coherent Potential Approximation
4.3.4 Diagrammatic Methods
4.3.5 Applications
4.4 Spin Systems
4.4.1 The Tyablikow Approximation
4.4.2 Renormalised Spin Waves
4.4.3 Exercises
4.5 The Electron-Magnon Interaction
4.5.1 Magnetic 4f Systems (s-f-Model)
4.5.2 The Infinitely Narrow Band
4.5.3 The Alloy Analogy
4.5.4 The Magnetic Polaron
4.5.5 Exercises
4.6 Self-Examination Questions
5 Perturbation Theory (T = 0)
5.1 Causal Green's Functions
5.I.1 Conventional Time-dependent Perturbation Theory
5.1.2 Switching on the Interaction Adiabatically
5.1.3 Causal Green's Functions
5.1.4 Exercises
5.2 Wick's Theorem
5.2.1 The Normal Product
5.2.2 Wick's Theorem
5.2.3 Exercises
5.3 Feynman Diagrams
5.3.1 Perturbation Expansion for the Vacuum Amplitude
5.3.2 The Linked-Cluster Theorem
5.3.3 The Principal Theorem of Connected Diagrams
5.3.4 Exercises
5.4 Single-Particle Green's Functions
5.4.1 Diagrammatic Perturbation Expansions
5.4.2 The Dyson Equation
5.4.3 Exercises
5.5 The Ground-State Energy of the Electron Gas (Jellium Model)
5.5.1 First-Order Perturbation Theory
5.5.2 Second-Order Perturbation Theory
5.5.3 The Correlation Energy
5.6 Diagrammatic Partial Sums
5.6.1 The Polarisation Propagator
5.6.2 Effective Interactions
5.6.3 Vertex Function
5.6.4 Exercises
5.7 Self-Examination Questions
6 Perturbation Theory at Finite Temperatures
6.1 The Matsubara Method
6.1.1 Matsubara Functions
6.1.2 The Grand Canonical Partition Function
6.1.3 The Single-Particle Matsubara Function
6.2 Diagrammatic Perturbation Theory
6.2.1 Wick's Theorem
6.2.2 Diagram Analysis of the Grand-Canonical Partition Function
6.2.3 Ring Diagrams
6.2.4 The Single-Particle Matsubara Function
6.3 Self-Examination Questions
Solutions of the Exercises
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)