注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)廣義微分幾何講義(英文版)

廣義微分幾何講義(英文版)

廣義微分幾何講義(英文版)

定 價:¥109.00

作 者: [法]帕特里克·伊格萊西亞斯 - 澤穆爾(Patrick Iglesias-Zemmour)
出版社: 世界圖書出版公司
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787523218419 出版時間: 2025-01-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  《廣義微分幾何講義》是為對微分幾何感興趣的學(xué)生準(zhǔn)備的,尤其是那些在經(jīng)典理論未涵蓋的幾何情形。它是已出版的《廣義微分幾何》(Diffeology)的配套教學(xué)筆記,一半源自作者在汕頭大學(xué)訪問時的專題講座,一半則是作者在同各方學(xué)者多年研究探討后的研究成果、思考、練習(xí)等作者希望與讀者分享的筆記。全書以時間線為軸,講述Diffeology領(lǐng)域的起源和發(fā)展,編排合理,每章篇頭都有總述、定義、理論等講解,輔以推論過程,由簡到難,自然過渡到結(jié)論,很符合授課講義的風(fēng)格,其后還有習(xí)題、問題、思考探討等用以鞏固講義知識,并啟發(fā)思考,對研究微分幾何或數(shù)學(xué)物理的學(xué)生與研究人員非常有用。

作者簡介

  帕特里克·伊格萊西亞斯-澤穆爾(Patrick Iglesias-Zemmour)是法國國家科學(xué)研究中心研究員,也是以色列希伯來大學(xué)的長期客座教授。他以辛幾何和廣義微分幾何的研究而聞名。他所著的《廣義微分幾何》(Diffeology)是該領(lǐng)域國際上的shou部教材?!稄V義微分幾何講義》是作者多年研究成果的全新呈現(xiàn),與《廣義微分幾何》相互呼應(yīng)。

圖書目錄

Preface
At the Beginning
Diffeology, the Axiomatic
The Irrational Tori 8
Generating Families, Dimension
Cartan-De-Rham Calculus
Diffeology Fiber Bundles
Homotopy Theory in Diffeology
Local Diffeology, Modeling
Modeling: Manifolds, Orbifolds and Quasifolds
Symplectic Mechanics and Diffeology
Diffeology and Non-Commutative Geometry
Functional Diffeology on Fourier Coefffcients
Smooth Function on Periodic Functions
Symplectic Diffeology on Smooth Periodic Functions
Infinite Torus Action on Smooth Periodic Functions
Basic 1-Forms on Principal Fiber Bundles
Differential of Holonomy for Torus Bundles
Non-symplectic manifold with injective univ. moment map
On Riemannian Metric in Diffeology
A Few Half-Lines
1-Forms on Half-Lines
1-Forms on the Subset Half-Line
Cotangent Space of the Half-Line
1-Forms on Half-Spaces
p-Forms on Half-Spaces
p-Forms on Corners
Differential Forms on the Cross
A note on Hamiltonian Diffeomorphisms
Differential of a Lie-Group Valued Function
The Geodesics of the 2-Torus
The Use of the Moment Map in Geodesic Calculus
The Parasymplectic Space of Geodesics Trajectories
Diffeomorphisms of Geod(T2)
The Diffeomorphisms of the Square
Diffeological Spaces are Locally Connected
Vague Adjunction of a Point to a Space
Embedding a Diffeological Space Into its Powerset
Foliations and Diffeology
Klein Stratiffcation of Diffeological Spaces
Lagrange’s Equations of Motion
Poisson Bracket in Diffeology
Smooth embeddings and smoothly embedded subsets
Seifert Orbifolds
Symplectic spaces without Hamiltonian diffeomorphisms
The Diffeology Framework of General Covariance
Postface: The Beginning of Diffeological Spaces
Appendix: A Categorical Approach to Diffeology
Bibliography

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號