注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)非線性光學(xué)(第4版 英文版)

非線性光學(xué)(第4版 英文版)

非線性光學(xué)(第4版 英文版)

定 價:¥129.00

作 者: 美〕羅伯特 · 博伊德 (Robert W. Boyd)
出版社: 世界圖書出版公司
叢編項:
標 簽: 暫缺

ISBN: 9787523218563 出版時間: 2025-04-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字數(shù):  

內(nèi)容簡介

  非線性光學(xué)是一門研究強激光與物質(zhì)相互作用的學(xué)科。羅伯特·博伊德教授所著的這本《非線性光學(xué)》是一本非線性光學(xué)教科書,適合初學(xué)的研究生閱讀。本書旨在介紹非線性光學(xué)領(lǐng)域的基本概念,使學(xué)生能夠在這一領(lǐng)域開展獨立研究。作者在羅切斯特大學(xué)的課程中成功地使用了本書的第一個版本。參加該課程的學(xué)生通常從高年級學(xué)生到高年級博士生不等,其學(xué)科包括光學(xué)、物理、化學(xué)、電子工程、機械工程和化學(xué)工程等。本書可用于非線性光學(xué)、量子光學(xué)、量子電子學(xué)、激光物理學(xué)、電子光學(xué)和現(xiàn)代光學(xué)等領(lǐng)域的研究生課程。通過刪除一些較難的章節(jié),本書也適合高年級本科生使用;另一方面,書中的一些內(nèi)容相當(dāng)高深,不僅適合高年級研究生使用,而且可以作為科學(xué)家的工具書。

作者簡介

  羅伯特·博伊德(Robert W. Boyd)教授擁有麻省理工學(xué)院物理學(xué)學(xué)士學(xué)位(1969年)和加州大學(xué)伯克利分校物理學(xué)博士學(xué)位(1977年)。他的博士論文由 Charles H. Townes 教授指導(dǎo),內(nèi)容涉及利用非線性光學(xué)技術(shù)進行天文學(xué)紅外探測。博伊德教授于 1977 年加入羅切斯特大學(xué)光學(xué)研究所,自 1987 年以來一直擔(dān)任光學(xué)教授一職。此外,他還兼任物理學(xué)教授。2002 年,他被任命為首位 M. Parker Givens 冠名光學(xué)教授。2010 年,他成為渥太華大學(xué)物理教授和加拿大量子非線性光學(xué)卓越研究主席,同時保留了與羅切斯特大學(xué)的聯(lián)系。博伊德是美國光學(xué)學(xué)會(OSA)院士,2016年,他因 “對非線性光學(xué)領(lǐng)域做出的基礎(chǔ)性貢獻,包括光速控制方法、量子成像方法和復(fù)合非線性光學(xué)材料的開發(fā) ”而獲得查爾斯-哈德-湯恩斯獎?wù)拢–harles Hard Townes Medal)。2023年,他因“在非線性光學(xué)(包括慢光、量子成像以及納米復(fù)合光學(xué)材料和超材料的開發(fā))領(lǐng)域做出開創(chuàng)性貢獻”而獲得弗雷德里克-艾夫斯獎?wù)?賈魯斯-奎恩獎(Frederic Ives Medal / Jarus W. Quinn Prize)。

圖書目錄

Preface to the Fourth Edition
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Chapter 1: The Nonlinear Optical Susceptibility
1.1 Introduction to Nonlinear Optics
1.2 Descriptions of Nonlinear Optical Processes
1.2.1 Second-Harmonic Generation
1.2.2 Sum- and Difference-Frequency Generation
1.2 3 Sum-Frequency Generation  
1.2.4 Difference-Frequency Generation
1.2.5 Optical Parametric Oscillations
1.2.6 Third-Order Nonlinear Optical Processes
1.2.7 Third-Harmonic Generation
1.2.8 Intensity-Dependent Refractive Index
1.2.9 Third-Order Interactions (General Case)
1.2.10 Parametric versus Nonparametric Processes
1.2.11 Saturable Absorption
1.2.12 Two-Photon Absorption
1.2.13 Stimulated Raman Scattering
1.3 Formal Definition of the Nonlinear Susceptibility
1.4 Nonlinear Susceptibility of a Classical Anharmonic Oscillator
1.4.1 Noncentrosymmetric Media
1.4.2 Miller's Rule
1.4.3 Centrosymmetric Media
1.5 Properties of the Nonlinear Susceptibility
1.5.1 Reality of the Fields
1.5.2 Intrinsic Permutation Symmetry
1.5.3 Symmetries for Lossless Media
1.5.4 Field Energy Density for a Nonlinear Medium
1.5.5 Kleinman's Symmetry
1.5.6 Contracted Notation
1.5.7 Effective Value of d (deff)
1.5.8 Spatial Symmetry of the Nonlinear Medium
1.5.9 Influence of Spatial Symmetry on the Linear Optical Properties of a Material Medium
1.5.10 Influence of Inversion Symmetry on the Nonlinear Second-Order Response
1.5.11 Influence of Spatial Symmetry on the Second-Order Susceptibility
1.5.12 Number of Independent Elements of xijk(2) (ω3, ω2,ω1)
1.5.13 Distinction between Noncentrosymmetric and Cubic Crystal Classes
1.5.14 Distinction between Noncentrosymmetric and Polar Crystal Classes
1.5.15 Influence of Spatial Symmetry on the Third-Order Nonlinear Response
1.6 Time-Domain Description of Optical Nonlinearities
1.7 Kramers-Kronig Relations in Linear and Nonlinear Optics
1.7.1 Kramers-Kronig Relations in Linear Optics
1.7.2 Kramers-Kronig Relations in Nonlinear Optics
Problems
References
Chapter 2: Wave-Equation Description of Nonlinear Optical Interactions
2.1 The Wave Equation for Nonlinear Optical Media
2.2 The Coupled-Wave Equations for Sum-Frequency Generation
2.2.1 Phase-Matching Considerations
2.3 Phase Matching
2.4 Quasi-Phase-Matching (QPM)
2.5 The Manley-Rowe Relations
2.6 Sum-Frequency Generation
2.7 Second-Harmonic Generation
2.7.1 Applications of Second-Harmonic Generation
2.8 Difference-Frequency Generation and Parametric Amplification
2.9 Optical Parametric Oscillators
2.9.1 Influence of Cavity Mode Structure on OPO Tuning
2.10 Nonlinear Optical Interactions with Focused Gaussian Beams
2.10.1 Paraxial Wave Equation
2.10.2 Gaussian Beams
2.10.3 Harmonic Generation Using Focused Gaussian Beams
2.11 Nonlinear Optics at an Interface
2.12 Advanced Phase Matching Method
Problems
References
Chapter 3: Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility
3.1 Introduction
3.2 Schrodinger Equation Calculation of the Nonlinear Optical Susceptibility
3.2.1 Energy Eigenstates
3.2.2 Perturbation Solution to Schrödinger's Equation
3.2.3 Linear Susceptibility
3.2.4 Second-Order Susceptibility
3.2.5 Third-Order Susceptibility
3.2.6 Third-Harmonic Generation in Alkali Metal Vapors
3.3 Density Matrix Formulation of Quantum Mechanics
3.3.1 Example: Two-Level Atom
3.4 Perturbation Solution of the Density Matrix Equation of Motion
3.5 Density Matrix Calculation of the Linear Susceptibility
3.5.1 Linear Response Theory
3.6 Density Matrix Calculation of the Second-Order Susceptibility
3.6.1 χ(2) in the Limit of Nonresonant Excitation
3.7 Density Matrix Calculation of the Third-Order Susceptibility
3.8 Electromagnetically Induced Transparency
3.9 Local-Field Effects in the Nonlinear Optics
3.9.1 Local-Field Effects in Linear Optics
3.9.2 Local-Field Effects in Nonlinear Optics
Problems
References
Chapter 4: The Intensity-Dependent Refractive Index
4.1 Descriptions of the Intensity-Dependent Refractive Index
4.2 Tensor Nature of the Third-Order Susceptibility
4.2.1 Propagation through Isotropic Nonlinear
4.3 Nonresonant Electronic Nonlinearities
4.3.1 Classical, Anharmonic Oscillator Model of Electronic Nonlinearities
4.3.2 Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities
4.3.3 χ(3) in the Low-Frequency Limit
4.4 Nonlinearities Due to Molecular Orientation
4.4.1 Tensor Properties of χ(3) for the Molecular Orientation Effect
       4.5 Thermal Nonlinear Optical Effects
4.5.1 Thermal Nonlinearities with Continuous-Wave Laser Beams
4.5.2 Thermal Nonlinearities with Pulsed Laser Beams
4.6 Semiconductor Nonlinearities
4.6.1 Nonlinearities Resulting from Band-to-Band Transitions
4.6.2 Nonlinearities Involving Virtual Transitions
4.7 Concluding Remarks
Problems
Reference
Chapter 5: Molecular Origin of the Nonlinear Optical Response
5.1 Nonlinear Susceptibilities Calculated Using Time-Independent Perturbationin
5.1.1 Hydrogen Atom
5.1.2 General Expression for the Nonlinear Susceptibility in the Quasi-Static Timit
5.2 Semiempirical Models of the Nonlinear Optical Susceptibility
Model of Boling, Glass, and Owyoung
5.3 Nonlinear Optical Properties of Conjugated Polymers
5.4 Bond-Charge Model of Nonlinear Optical Properties
5.5 Nonlinear Optics of Chiral Media
5.6 Nonlinear Optics of Liquid Crystals
Problems
References
Chapter 6: Nonlinear Optics in the Two-Level Approximation
6.1 Introduction
6.2 Density Matrix Equations of Motion for a Two-Level Atom
6.2.1 Closed Two-Level Atom
6.2.2 Open Two-Level Atom
6.2.3 Two-Level Atom with a Non-Radiatively Coupled Third Level
6.3 Steady-State Response of a Two-Level Atom to a Monochromatic Field
6.4 Optical Bloch Equations
6.4.1 Harmonic Oscillator Form of the Density Matrix Equation
6.4.2 Adiabatic-Following Limit
       6.5 Rabi Oscillations and Dressed Atomic States
6.5.1 Rabi Solution of the Schrödinger Equation
6.5.2 Solution for an Atom Initially in the Ground State
6.5.3 Dressed States
6.5.4 Inclusion of Relaxation Phenomena
       6.6 Optical Wave Mixing in Two-Level Systems
6.6.1 Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of Pump and Probe Fields
6.6.2 Nonlinear Susceptibility and Coupled-Amplitude Equations
Problems
References
Chapter 7: Processes Resulting from the Intensity-Dependent Refractive Index
7.1 Self-Focusing of Light and Other Self-Action Effects
7.1.1 Self-Trapping of Light
7.1.2 Mathematical Description of Self-Action Effects
7.1.3 Laser Beam Breakup into Many Filaments
7.1.4 Self-Action Effects with Pulsed Laser Beam
7.2 Optical Phase Conjugation
7.2.1 Aberration Correction by Phase Conjugation
7.2.2 Phase Conjugation by Degenerate Four-Wave Mixing
7.2.3 Polarization Properties of Phase Conjugation
7.3 Optical Bistability and Optical Switchin
7.3.1 Absorptive Bistability
7.3.2 Refractive Bistabilit
7.3.3 Optical Switching
7.4 Two-Beam Coupling
7.5 Pulse Propagation and Temporal Soliton
7.5.1 Self-Phase Modulation
7.5.2 Pulse Propagation Equation
7.5.3 Temporal Optical Soliton
Problems
References
Chapter 8: Spontaneous Light Scattering and Acoustooptics
8.1 Features of Spontaneous Light Scattering
8.1.1 Fluctuations as the Origin of Light Scattering
8.1.2 Scattering Coeffcient
8.1.3 Scattering Cross Sectio
8.2 Microscopic Theory of Light Scattering
8.3 Thermodynamic Theory of Scalar Light Scattering
8.3.1 Ideal Gas
8.3.2 Spectrum of the Scattered Light
8.3.3 Brillouin Scattering
8.3.4 Stokes Scattering (First Term in Eq. (8.3.36))
              8.3.5 Anti-Stokes Scattering (Second Term in Eq. (8.3.36))
8.3.6 Rayleigh Center Scattering
8.4 Acoustooptics
8.4.1 Bragg Scattering of Light by Sound Waves
8.4.2 Raman-Nath Effect
Problems
References
Chapter 9: Stimulated Brillouin and Stimulated Rayleigh Scattering
9.1 Stimulated Scattering Processes
9.2 Electrostriction
9.3 Stimulated Brillouin Scattering (Induced by Electrostriction)
9.3.1 Pump Depletion Effects in SBS
9.3.2 SBS Generator
9.3.3 Transient and Dynamical Features of SBS
9.4 Phase Conjugation by Stimulated Brillouin Scattering
9.5 Stimulated Brillouin Scattering in Gases
9.6 General Theory of Stimulated Brillouin and Stimulated Rayleigh Scattering
9.6.1 Appendix: Definition of the Viscosity Coefficients
Problems
References
Chapter 10: Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering
10.1 The Spontaneous Raman Effect
10.2 Spontaneous versus Stimulated Raman Scattering
10.3 Stimulated Raman Scattering Described by the Nonlinear Polarization
10.4 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering
10.4.1 Dispersionless, Nonlinear Medium without Gain or Loss
10.4.2 Medium without a Nonlinearity
10.4.3 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering
10.5 Coherent Anti-Stokes Raman Scattering
10.6 Stimulated Rayleigh-Wing Scattering
10.6.1 Polarization Properties of Stimulated Rayleigh-Wing Scatterings
Problems
References
Chapter 11: The Electrooptic and Photorefractive Effects
11.1 Introduction to the Electrooptic Effect
11.2 Linear Electrooptic Effect
11.3 Electrooptic Modulators
11.4 Introduction to the Photorefractive Effect
11.5 Photorefractive Equations of Kukhtarev et al.
11.6 Two-Beam Coupling in Photorefractive Materials
11.7 Four-Wave Mixing in Photorefractive Materials
11.7.1 Externally Self-Pumped Phase-Conjugate Mirror
11.7.2 Internally Self-Pumped Phase-Conjugate Mirror
11.7.3 Double Phase-Conjugate Mirror
11.7.4 Other Applications of Photorefractive Nonlinear Optics
Problems
References
Chapter 12: Optically Induced Damage and Multiphoton Absorption
12.1 Introduction to Optical Damage
12.2 Avalanche-Breakdown Model
12.3 Influence of Laser Pulse Duration
12.4 Direct Photoionization
12.5 Multiphoton Absorption and Multiphoton lonization
12.5.1 Theory of Single- and Multiphoton Absorption and Fermi's Golden Rule
12.5.2 Linear (One-Photon) Absorption
12.5.3 Two-Photon Absorption
12.5.4 Multiphoton Absorption
Problems
References
Chapter 13: Ultrafast and Intense-Field Nonlinear Optics
13.1 Introduction
13.2 Ultrashort-Pulse Propagation Equation
13.3 Interpretation of the Ultrashort-Pulse Propagation Equation
13.3.1 Self-Steepening
13.3.2 Space-Time Coupling
13.3.3 Supercontinuum Generation
13.4 Intense-Field Nonlinear Optics
13.5 Motion of a Free Electron in a Laser Field
13.6 High-Harmonic Generation
13.7 Tunnel Ionization and the Keldysh Model
13.8 Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics
13.9 Nonlinear Quantum Electrodynamics
Problem
References
Chapter 14: Nonlinear Optics of Plasmonic Systems
14.1 Introduction to Plasmonics
14.2 Simple Derivation of the Plasma Frequency
14.3 The Drude Model
14.4 Optical Properties of Gold
14.5 Surface Plasmon Polariton
14.6 Electric Field Enhancement in Plasmonic Systems
Problems
References
Appendices
Appendix A The SI System of Units
A.1 Energy Relations and Poynting's Theorem
A.2 The Wave Equation
A.3 Boundary Conditions
Appendix B The Gaussian System of Units
Appendix C Systems of Units in Nonlinear Optics
C.1 Conversion between the Systems
Appendix D Relationship between Intensity and Field Strength
Appendix E Physical Constants
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號