《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》的目的是在研究生層面提供博弈論的*新全面、嚴謹?shù)慕Y果?!禦ECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》旨在向讀者介紹計算游戲均衡的優(yōu)化方法和算法。作者假設讀者熟悉博弈論、數(shù)學規(guī)劃、優(yōu)化和非凸優(yōu)化的基本概念。我們打算《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》也用于研究生階段工程、運籌學、計算機科學和數(shù)學系提供的優(yōu)化、博弈論課程。由于《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》涉及了許多在早期優(yōu)化教科《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》沒有描述的計算平衡的新算法和想法,我們希望《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》不僅對博弈論專家有用,而且對優(yōu)化研究人員也有用。除了納什均衡、伯杰均衡、非合作博弈等**主題外,一些重要的*近的發(fā)展包括:*大*小和*小*大問題、反納什、反伯杰均衡、多矩陣博弈、廣義納什均衡、計算方法和算法。