注冊 | 登錄讀書好,好讀書,讀好書!
讀書網-DuShu.com
當前位置: 首頁出版圖書科學技術自然科學自然科學總論博弈論最新進展:新均衡、多矩陣博弈及計算方法(英文)

博弈論最新進展:新均衡、多矩陣博弈及計算方法(英文)

博弈論最新進展:新均衡、多矩陣博弈及計算方法(英文)

定 價:¥98.00

作 者: (蒙)R.ENKHBAT(R.恩科巴圖),B.SAHEYA(薩和雅)等
出版社: 科學出版社
叢編項:
標 簽: 暫缺

購買這本書可以去


ISBN: 9787030823007 出版時間: 2025-06-01 包裝: 平裝
開本: 16開 頁數(shù): 字數(shù):  

內容簡介

  《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》的目的是在研究生層面提供博弈論的*新全面、嚴謹?shù)慕Y果?!禦ECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》旨在向讀者介紹計算游戲均衡的優(yōu)化方法和算法。作者假設讀者熟悉博弈論、數(shù)學規(guī)劃、優(yōu)化和非凸優(yōu)化的基本概念。我們打算《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》也用于研究生階段工程、運籌學、計算機科學和數(shù)學系提供的優(yōu)化、博弈論課程。由于《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》涉及了許多在早期優(yōu)化教科《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》沒有描述的計算平衡的新算法和想法,我們希望《RECENT ADVANCES IN GAME THEORY NEW EQUILIBRIUMS,POLYMATRIX AND BIMATRIX GAMES,AND COMPUTATIONAL METHODS(博弈論*新進展:新均衡、多矩陣博弈及計算方法)》不僅對博弈論專家有用,而且對優(yōu)化研究人員也有用。除了納什均衡、伯杰均衡、非合作博弈等**主題外,一些重要的*近的發(fā)展包括:*大*小和*小*大問題、反納什、反伯杰均衡、多矩陣博弈、廣義納什均衡、計算方法和算法。

作者簡介

暫缺《博弈論最新進展:新均衡、多矩陣博弈及計算方法(英文)》作者簡介

圖書目錄

Contents
Preface
Chapter1 Introduction 1
Chapter2 Zero-Sum Game 6
2.1 Two-person zero-sumgame 6
2.2 Minimax and maxmin 7
2.3 Saddle point 11
2.4 Matrixgamein pure strategies 13
2.5 Matrixgamein mixed strategies 15
2.6 Reductionofgame theoryto linear programming 16
Chapter3 Maxmin and MinimaxProblems 19
3.1 Maxmin problem 19
3.2 Optimality conditionsfor maxmin problem 21
3.3 Optimality conditions for minimax problem 25
Chapter4 Non-Zero Sum Game 31
4.1 Two-person non-zero sumgame 31
4.1.1 Bimatrixgame 31
4.1.2 Nash equilibrium 33
4.1.3 Berge equilibrium 38
4.2 Non-zero sum three-persongame 43
4.3 Non-zero sum four-persongame 48
4.4 Non-zero sum n-persongame 55
Chapter5 Anti-Nash and Anti-Berge Equilibriumin Bimatrix Game 59
5.1 Anti-Nash equilibriumin bimatrixgame 59
5.2 Anti-Berge equilibriumin bimatrixgame 63
Chapter6 Polymatrix Game 65
6.1 Three-sidedgame 65
6.1.1 Main propertiesof thegame Γ(A, B,C) 66
6.1.2 Optimization formulationof three-sidedgame 69
6.2 Four-players triplegame 72
6.3 Game of N-players 79
6.3.1 Nash theorem and the optimization problem 81
Chapter7 N-Players Non-Cooperative Games 85
7.1 Non-cooperativegames 85
7.2 Generalized Nash equilibrium problems 87
7.3 Someequivalent approachto generalizedNash equilibrium problems 89 89
7.3.1 Variational inequality approach
7.3.2 Nikaido-Isoda function based approach 90
7.3.3 Karush-Kuhn-Tucker conditions approach 92
7.4 Global optimization D.Capproach to quadratic nonconvex generalized Nash equilibrium problems 94
7.4.1 Generalized Nash equilibrium problem and equivalent optimization formulation 94
7.4.2 Quadratic nonconvexgame andgap function 96
7.4.3 D.Coptimization approachto non-cooperativegame 100
7.5 Generalized Nash equilibrium problem based on Malfatti’s problem 103
7.5.1 Malfatti’s problemand convex maximization 104
7.5.2 Generalized Nash equilibrium problems 105
7.6 Aglobal optimization approach to Berge equilibrium based on a regularized function 109
7.6.1 Existence of Berge equilibrium and constrained optimization reformulations 110 Chapter8 Game Theory and Hamiltonian System 116
8.1 Hamiltonian system 116
8.2 Evolutionarygames and Hamiltonian systems.119
8.3 Optimal controltheoryandthe Hamiltonian operator 121
8.4 Differentialgames and the Hamilton-Jacobi-Bellman (HJB) Principle 122
8.4.1 The relationship betweengame theoryandthe Hamiltonian operator 124
8.4.2 Two-person zero-sum differentialgames 125
8.4.3 Two-person non-zero sum differentialgames 127
Chapter9 Computational Methods and Algorithmsfor Matrix Game 132
9.1 D.Cprogramming approachtoBerge equilibrium 132
9.1.1 Local search method 133
9.1.2 Global search method 134
9.1.3 Numerical results for D.Cprogramming approach to Berge equilibrium 137
9.2 Global search method curvilinear algorithm forgame 142
9.2.1 The curvilinear global search algorithm 142
9.2.2 Numerical results for three-persongame 145
9.2.3 Numerical results for four-persongame 147
9.2.4 Numerical results N-persongame 149
9.3 The numerical approach for anti-Nash equilibrium search 152
9.3.1 The modi.ed Rosenbrock algorithm 153
9.3.2 Theunivariate global search procedure 154
9.3.3 Numerical results for anti-Nash equilibriumby Rosenbrock algorithm 156
9.4 Modi.ed parallel tangent algorithm for anti-Berge equilibrium 159
9.4.1 The modi.ed parallel tangent algorithm 160
9.4.2 Theunivariate global search procedure 161
9.4.3 Numerical results for anti-Berge equilibrium by modi.ed tangent algorithm 162
9.5 The curvilinear multistart algorithmfor polymatrixgame 166
9.5.1 Numericalexperimentof polymatrixgame 169
9.6 Numerical resultsfor non-cooperativegame 171
9.7 Numerical resultsforMalfati’s problem 175
Bibliography 182

本目錄推薦

掃描二維碼
Copyright ? 讀書網 www.talentonion.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網安備 42010302001612號